La sindemia global de obesidad, desnutrición y cambio climático: Efectos de la COVID 19

Santa Magalys Jiménez Acosta, Sergio Santana Porbén

Texto completo:

PDF

Resumen

La pandemia de la Covid 19 (desatada y decretada en el mes de Marzo del 2020) ha exacerbado las inequidades, desigualdades y desequilibrios que dominan el mundo de hoy. Llama la atención de todos que los sujetos diagnosticados con fenotipos nutricionales polares exhiben el riesgo mayor del contagio, las complicaciones y la mortalidad atribuibles al virus SARS Cov 2 (agente causal responsable de la Covid 19). El nexo documentado en varias series clínicas que se han recogido en países de América, la Unión Europa y Asia entre la susceptibilidad a la infección viral y el estado nutricional del sujeto ha vuelto a colocar en el primer plano del debate público y científico las estrechas interacciones que sostienen la inmunocompetencia y la nutrición. La alimentación saludable, variada, equilibrada e inocua sería clave en el aseguramiento de un enfrentamiento exitoso a la Covid 19, pero no puede pasarse por alto que la seguridad alimentaria de las personas, comunidades y países se debe realizar (y asegurar) dentro de un contexto global dominado por el cambio climático y las consecuentes afectaciones para la producción mundial de alimentos. La humanidad enfrenta hoy lo que sería su desafío más poderoso, cuando dentro de una sindemia singular y única se han integrado el cambio climático, la vulnerabilidad alimentaria y nutricional, la doble carga de la morbilidad nutricional, el alza en las enfermedades crónicas no transmisibles, y ahora la pandemia de la Covid 19. El éxito en la contención y eventual superación de la Covid 19 dependería entonces de la actuación intersectorial e interdisciplinaria, y el reconocimiento en todo momento del estado nutricional del sujeto como la expresión más concentrada del estado de salud.

Palabras clave

Sindemia; Obesidad; Desnutrición; Cambio climático; Covid 19

Referencias

Tsai AC, Mendenhall E, Trostle JA, Kawachi I. Co-occurring epidemics, syndemics, and population health. The Lancet 2017;389:978-82.

Singer M, Bulled N, Ostrach O, Mendenhall E. Syndemics and the biosocial conception of health. The Lancet 2017;389:941-50.

Singer M, Bulled N, Ostrach B. Whither syndemics?: Trends in syndemics research, a review 2015-2019. Glob Public Health 2020;15(7):943-55. Disponible en: http://doi:10.1080/17441692.2020.1724317. Fecha de última visita: 20 de Junio del 2020.

Swinburn BA, Kraak VI, Allender S, Atkins VJ, Baker PI, Bogard JR; et al. The global syndemic of obesity, undernutrition, and climate change: The Lancet Commission report. The Lancet 2019;393:791-846. Available on: http://dx.doi.org/10.1016/S0140-6736(18)32822-8. Fecha de última visita: 20 de Junio del 2020.

Willen SS, Knipper M, Abadía-Barrero CE, Davidovitch N. Syndemic vulnerability and the right to health. The Lancet 2017;389:964-77.

Popkin BM, Corvalan C, Grummer-Strawn LM. Dynamics of the double burden of malnutrition and the changing nutrition reality. The Lancet 2020;395 (10217):65-74.

Wells JC, Sawaya AL, Wibaek R, Mwangome M, Poullas MS, Yajnik CS, Demaio A. The double burden of malnutrition: Aetiological pathways and consequences for health. The Lancet 2020;395(10217):75-88.

Biesalski HK. Hidden hunger and the transformation of food systems: How to combat the double burden of malnutrition? Karger Medical Scientific Publishers. Londres: 2020.

Amoroso L. Post-2015 Agenda and Sustainable Development Goals: Where are we now? Global opportunities to address malnutrition in all its forms, including hidden hunger. World Rev Nutr Diet 2017;118:45-56. Disponible en: http://doi:10.1159/000484334. Fecha de última visita: 20 de Junio del 2020.

Monteiro CA, Cannon GJ. The role of the transnational ultra-processed food industry in the pandemic of obesity and its associated diseases: Problems and solutions. World Nutrition 2019;10:89-99.

Fox NJ, Bissell P, Peacock M, Blackburn J. The micropolitics of obesity: Materialism, markets and food sovereignty. Sociology 2018;52:111-27.

McCarty J. The industrial food complex. Greenhaven Publishing LLC. New York: 2019.

Schiefer G. The responsibility of global agribusiness: Consequences for agribusiness research. Int Food Agribusiness Manage Rev 2017; 20(1030-2017-2133): 1-4. Disponible en: https://ageconsearch.umn.edu/record/264203/files/ifamr2017.x001.pdf. Fecha de última visita: 20 de Junio del 2020.

Patz JA, Thomson MC. Climate change and health: Moving from theory to practice. PLoS Med 2018;15(7):1-5. Disponible en: https://doi.org/10.1371/journal.pmed.1002628. Fecha de última visita: 12 de Enero del 2020.

Minos D, Butzlaff I, Demmler KM, Rischke R. Economic growth, climate change, and obesity. Curr Obes Rep 2016;5:441-8.

Trentinaglia MT, Parolini M, Donzelli F, Olper A. Climate change and obesity: A global analysis. Global Food Security 2021;29:100539. Disponible en: https://doi.org/10.1016/j.gfs.2021.100539. Fecha de última visita: 20 de Junio del 2020.

Stern DI, Kaufmann RK. Anthropogenic and natural causes of climate change. Climatic Change 2014;122(1):257-69. Disponible en: https://link.springer.com/article/10.1007/s10584-013-1007-x. Fecha de última visita: 20 de Junio del 2020.

Vincent WF. Arctic climate change: Local impacts, global consequences, and policy implications. En: The Palgrave Handbook of Arctic Policy and Politics [Editores: Coates K, Holroyd C]. Palgrave Macmillan. Cham: 2020. Disponible en: https://doi.org/10.1007/978-3-030-20557-7_31. Fecha de última visita: 20 de Junio del 2020.

Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S. Climate change has likely already affected global food production. PLoS One. 2019;14(5):e0217148. Disponible en: http://doi:10.1371/journal.pone.0217148. Fecha de última visita: 20 de Junio del 2020.

Sundström JF, Albihn A, Boqvist S, Ljungvall K, Marstorp H, Martiin C; et al. Future threats to agricultural food production posed by environmental degradation, climate change, and animal and plant diseases– A risk analysis in three economic and climate settings. Food Security 2014;6:201-15.

Adger WN, Crépin AS, Folke C, Ospina D, Chapin III FS, Segerson K; et al. Urbanization, migration, and adaptation to climate change. One Earth 2020;3:396-9.

Gonzalez CG. Migration as reparation: Climate change and the disruption of borders. Loyola Law Rev [New Orleans] 2020;66:401. Disponible en: https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/loyolr66&section=24. Fecha de última visita: 20 de Junio del 2020.

Gough I. Economic crisis, climate change and the future of welfare states. Twenty-First Century Soc 2010;5(1):51-64. Disponible en: https://www.tandfonline.com/doi/abs/10.1080/17450140903484049. Fecha de última visita: 20 de Junio del 2020.

Leichenko RM, O’Brien KL, Solecki WD. Climate change and the global financial crisis: A case of double exposure. Ann Assoc Am Geograph 2010;100:963-72.

Beck U. Remapping social inequalities in an age of climate change: for a cosmopolitan renewal of sociology. Global Networks 2010;10:165-81.

Nardulli PF, Peyton B, Bajjalieh J. Climate change and civil unrest: The impact of rapid-onset disasters. J Conflict Resolution 2015;59:310-35.

Olaimat AN, Shahbaz HM, Fatima N, Munir S, Holley RA. Food safety during and after the era of COVID-19 pandemic. Front Microbiol 2020;11:1854. Disponible en: http://doi:10.3389/fmicb.2020.01854. Fecha de última visita: 21 de Junio del 2020.

Shahidi F. Does COVID-19 affect food safety and security? J Food Bioactives 2020;9. Disponible en: http://www.isnff-jfb.com/index.php/JFB/article/view/125. Fecha de última visita: 22 de Junio del 2020.

Desai AN, Aronoff DM. Food safety and COVID-19. JAMA 2020;323:1982-1989.

Cutler D. How will COVID-19 affect the health care economy? JAMA 2020; 323(22):2237-8. Disponible en: http://doi:10.1001/jama.2020.7308. Fecha de última visita: 22 de Junio del 2020.

Paslakis G, Dimitropoulos G, Katzman DK. A call to action to address COVID-19–induced global food insecurity to prevent hunger, malnutrition, and eating pathology. Nutr Rev 2021;79:114-6.

Dickinson M, Food frights: COVID-19 and the specter of hunger. Agric Human Values 2020;1-2. Disponible en: http://doi:10.1007/s10460-020-10063-3. Fecha de última visita: 20 de Junio del 2020.

United Nations (2015) Resolution adopted by the General Assembly on 25 September 2015, Transforming our world: The 2030 Agenda for Sustainable Development (A/RES/70/1).

Achadi E, Ahuja A, Bendech MA, Bhutta ZA, De-Regil LM, Fanzo J; et al. Global Nutrition Report. From promise to impact- Ending malnutrition by 2030. UNICEF. Geneva: 2016.

von Braun J. Climate change risks for agriculture, health, and nutrition. En: Health of people, health of planet and our responsibility: Climate change, air pollution and health [Editores: Al-Delaimy WK, Ramanathan V, Sánchez Sorondo M]. Springer. Cham: 2020. pp. 135-148.

United Nations Food and Agriculture Organization. The state of food security and nutrition in the world 2020: Transforming food systems for affordable healthy diets. Volume 2020. Rome: 2020. Disponible en: http://www.fao.org/publications/sofi/2020/en/. Fecha de última visita: 22 de Junio del 2020.

Rosegrant MW, Paisner MS, Meijer S, Witcover J. 2020 global food outlook: Trends, alternatives and choices. Report number E14-143. International Food Policy Research Institute. Washington DC: 2001.

Creegan EF, Flynn R. SDG 2 Zero Hunger. En: Actioning the global goals for local impact [Editors: Franco IB, Chatterji T, Derbyshire E, Tracey J]. Springer. Singapore: 2020. pp. 23-37. Disponible en: https://doi.org/10.1007/978-981-32-9927-6. Fecha de última visita: 22 de Junio del 2020.

Moyer JD, Hedden S. Are we on the right path to achieve the sustainable development goals? World Development 2020;127:104749. Disponible en: https://doi.org/10.1016/j.worlddev.2019.104749. Fecha de última visita: 22 de Junio del 2020.

Obasohan PE, Walters SJ, Jacques R, Khatab K. Risk factors associated with malnutrition among children under-five years in Sub-Saharan african countries: A scoping review. Int J Environ Res Public Health 2020;17(23):8782. Disponible en: http://doi:10.3390/ijerph17238782. Fecha de última visita: 22 de Junio del 2020.

Pomati M, Nandy S. Assessing progress towards SDG2: Trends and patterns of multiple malnutrition in young children under 5 in West and Central Africa. Child Indicators Research 2020;13:1847-73.

Mkhize M, Sibanda M. A review of selected studies on the factors associated with the nutrition status of children under the age of five years in South Africa. Int J Environ Res Public Health 2020;17(21):7973.Disponible en: http://doi:10.3390/ijerph17217973. Fecha de última visita: 24 de Junio del 2020.

FAO/PAHO/WFP/UNICEF. Regional overview of food security in Latin America and the Caribbean: Towards healthier food environments that address all forms of malnutrition. Santiago de Chile: 2019. Disponible en: http://10.4060/ca6979en. Fecha de última visita: 24 de Junio del 2020.

Niaz U, Malik N, Mahmood S, Batool Z. Nexuses between malnutrition, social exclusion of children and human capital: A qualitative study. Rev Econ Dev Studies 2020;6(2):315-22. Disponible en: http://reads.spcrd.org/index.php/reads/article/view/209. Fecha de última visita: 24 de Junio del 2020.

Martorell R. Improved nutrition in the first 1000 days and adult human capital and health. Am J Hum Biol 2017;29(2):10.1002/ajhb.22952. Disponible en: http://doi:10.1002/ajhb.22952. Fecha de última visita: 24 de Junio del 2020.

Thurow R. The first 1,000 days: A crucial time for mothers and children-and the world. Breastfeed Med 2016;11:416-8.

Branca F, Piwoz E, Schultink W, Sullivan LM. Nutrition and health in women, children, and adolescent girls. BMJ 2015;351:h4173. Disponible en: http://doi:10.1136/bmj.h4173. Fecha de última visita: 24 de Junio del 2020.

Das JK, Salam RA, Saeed M, Kazmi FA, Bhutta ZA. Effectiveness of interventions for managing acute malnutrition in children under five years of age in low-income and middle-income countries: A systematic review and meta-Analysis. Nutrients 2020;12(1):116. Disponible en: http://doi:10.3390/nu12010116. Fecha de última visita: 24 de Junio del 2020.

Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, et al; for the Global Burden of Disease (GBD) 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 2017;377(1):13-27. Disponible en: http://doi:10.1056/NEJMoa1614362. Fecha de última visita: 24 de Junio del 2020.

Tremmel M, Gerdtham UG, Nilsson PM, Saha S. Economic burden of obesity: A systematic literature review. Int J Environ Res Public Health 2017;14(4): 435. Disponible en: http://doi:10.3390/ijerph14040435. Fecha de última visita: 24 de Junio del 2020.

Specchia ML, Veneziano MA, Cadeddu C, Ferriero AM, Mancuso A, Ianuale C, Parente P, Capri S, Ricciardi W. Economic impact of adult obesity on health systems: A systematic review. Eur J Public Health 2015;25:255-62. Disponible en: http://doi:10.1093/eurpub/cku170. Fecha de última visita: 24 de Junio del 2020.

Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism 2019;92:6-10.

Stevens GA, Singh GM, Lu Y, Danaei G, Lin JK, Finucane MM; et al. National, regional, and global trends in adult overweight and obesity prevalences. Population Health Metrics 2012;10:1-16.

Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C; et al.; for the NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. The Lancet 2017;390(10113):2627-42.

Lobstein T, Jackson‐Leach RJPO. Planning for the worst: Estimates of obesity and comorbidities in school‐age children in 2025. Pediatr Obes 2016;11:321-5.

Upadhyay J, Farr O, Perakakis N, Ghaly W, Mantzoros C. Obesity as a disease. Med Clin North Am 2018;102:13-33. Disponible en: http://doi:10.1016/j.mcna.2017.08.004. Fecha de última visita: 24 de Junio del 2020.

Di Angelantonio E, Bhupathiraju SN, Wormser D, Gao P, Kaptoge S, Gonzalez AB. Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents. The Lancet 2016;388:776-786. Disponible en: http://doi:10.1016/S0140-6736(16)30175-1. Fecha de última visita: 25 de Junio del 2020.

Fox A, Feng W, Asal V. What is driving global obesity trends? Globalization or “modernization”? Global Health 2019;15:1-16.

Pirgon Ö, Aslan N. The role of urbanization in childhood bbesity. J Clin Res Pediatr Endocrinol 2015;7(3):163-7. Disponible en: http://doi:10.4274/jcrpe.1984. Fecha de última visita: 25 de Junio del 2020.

Egger G, Swinburn B, Islam FA. Economic growth and obesity: An interesting relationship with world-wide implications. Econ Human Biol 2012;10:147-53.

Ford ND, Patel SA, Narayan KV. Obesity in low-and middle-income countries: Burden, drivers, and emerging challenges. Annu Rev Public Health 2017;38:145-64.

Monteiro CA, Moubarac JC, Cannon G, Ng SW, Popkin B. Ultra­processed products are becoming dominant in the global food system. Obes Rev 2013;14 (Suppl 2):S21-S28.

Monteiro CA, Moubarac JC, Levy RB, Canella DS, Louzada MLDC, Cannon G. Household availability of ultra­processed foods and obesity in nineteen European countries. Public Health Nutr 2018;21:18-26.

Zobel EH, Hansen TW, Rossing P, von Scholten BJ. Global changes in food supply and the obesity epidemic. Curr Obes Rep 2016;5:449-55.

Popkin BM, Reardon T. Obesity and the food system transformation in Latin America. Obes Rev 2018;19:1028-64.

Hueston W. Overview of the global food system: changes over time/space and lessons for future food safety. En: Improving food safety through a One Health approach: A workshop summary [Editors: Choffnes ER, Relman DA, Olsen LA, Hutton R, Mack A]. National Academies Press. Washington DC: 2012.

Steiner G, Geissler B, Schernhammer ES. Hunger and obesity as symptoms of non-sustainable food systems and malnutrition. Applied Sciences 2019;9(6):1062. Disponible en: https://www.mdpi.com/427370. Fecha de última visita: 25 de Junio del 2020.

Coley D, Howard M, Winter M. Local food, food miles and carbon emissions: A comparison of farm shop and mass distribution approaches. Food Policy 2009;34:150-5.

Sim S, Barry M, Clift R, Cowell SJ. The relative importance of transport in determining an appropriate sustainability strategy for food sourcing. Int J Life Cycle Assess 2007;12:422-31.

Greenwood MRC, Johnson PR, Karp RJ, Wolman PG, Hurley J, Snyder E. Obesity in disadvantaged children. En: Malnourished children in the United States: Caught in the cycle of poverty [Editor: Karp L]. Washington DC: 1993. Pp 115-129.

Johnston FE, Low SM. Children of the urban poor: The sociocultural environment of growth, development, and malnutrition in Guatemala City. Routledge. Nuew York: 2019.

Nelson NM, Woods CB. Obesogenic environments: Are neighbourhood environments that limit physical activity obesogenic? Health Place 2009;15:917-24.

Dean JA, Elliott SJ. Prioritizing obesity in the city. J Urban Health 2012;89:196-213.

Lipek T, Igel U, Gausche R, Kiess W, Grande G. Obesogenic environments: Environmental approaches to obesity prevention. J Pediatr Endocrinol Metab 2015;28:485-95.

Abdullahi I, Ajibike MA, Man-Ugwueje AP, Ndububa OI. Environmental impact of indiscriminate waste disposal. Int J Engineer Appl Sci 2014;1(1):258036. Disponible en: https://www.neliti.com/publications/258036/environmental-impact-of-indiscriminate-waste-disposal. Fecha de última visita: 25 de Junio del 2020.

Gholami M, Torkashvand J, Kalantari RR, Godini K, Jafari AJ, Farzadkia M. Study of littered wastes in different urban land-uses: An 6 environmental status assessment. J Environ Health Sci Engineer 2020;18:915-24.

Li WC, Tse HF, Fok L. Plastic waste in the marine environment: A review of sources, occurrence and effects. Science Total Environ 2016;566:333-49.

Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A; et al. Plastic waste inputs from land into the ocean. Science 2015;347(6223):768-71.

Lebreton L, Slat B, Ferrari F, Sainte-Rose B, Aitken J, Marthouse R; et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports 2018;8:1-15.

Waring RH, Harris RM, Mitchell SC. Plastic contamination of the food chain: A threat to human health? Maturitas 2018;115:64-8.

Toussaint B, Raffael B, Angers-Loustau A, Gilliland D, Kestens V, Petrillo M; et al. Review of micro-and nanoplastic contamination in the food chain. Food Additives Contaminants: Part A 2019; 36:639-73.

Gaidajis G, Angelakoglou K, Aktsoglou D. E-waste: Environmental problems and current management. J Engineer Sci Technol Rev 2010;3:193-9.

Hong J, Shi W, Wang Y, Chen W, Li X. Life cycle assessment of electronic waste treatment. Waste Manage 2015;38:357-65.

Rajarao R, Sahajwalla V, Cayumil R, Park M, Khanna R. Novel approach for processing hazardous electronic waste. Procedia Environ Sci 2014;21:33-41.

Han Y, Tang Z, Sun J, Xing X, Zhang M, Cheng J. Heavy metals in soil contaminated through e-waste processing activities in a recycling area: Implications for risk management. Process Safety Environ Protect 2019;125:189-96.

Zhang T, Ruan J, Zhang B, Lu S, Gao C, Huang L; et al. Heavy metals in human urine, foods and drinking water from an e-waste dismantling area: Identification of exposure sources and metal-induced health risk. Ecotoxicol Environ Safety 2019;169:707-13.

Khairullina ER, Bogdanova VI, Slepneva EV, Nizamutdinova GF, Fatkhullina LR, Kovalenko YA, Skutelnik OA. Global climate change: Cyclical nature of natural and permanent nature of man-made processes. EuroAsian J BioSciences 2019;13(2):0-0. Disponible en: http://www.ejobios.org/download/global-climate-change-cyclical-nature-of-natural-and-permanent-nature-of-man-made-processes-7407.pdf. Fecha de última visita: 26 de Junio del 2020.

Crutzen PJ, Isaksen IS, McAfee JR. The impact of the chlorocarbon industry on the ozone layer. J Geophys Res Oceans 1978;83(C1):345-63.

Chipperfield MP, Bekki S, Dhomse S, Harris NR, Hassle B, Hossaini R; et al. Detecting recovery of the stratospheric ozone layer. Nature 2017;549(7671):211-8.

Friedlingstein P, Jones MW, O’Sullivan M, Andrew RM, Hauck J, Peters GP. Global carbon budget. Earth Syst Sci Data 2019;11:1783-838.

Anderson TR, Hawkins E, Jones PD. CO2, the greenhouse effect and global warming: From the pioneering work of Arrhenius and Callendar to today's Earth System Models. Endeavour 2016;40:178-87.

Cramer W, Bondeau A, Schaphoff S, Lucht W, Smith B, Sitch S. Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation. PhilTransact Royal Soc London Series B Biol Sci 2004;359 (1443):331-43.

Le Quéré C, Takahashi T, Buitenhuis ET, Rödenbeck C, Sutherland SC. Impact of climate change and variability on the global oceanic sink of CO2. Global Biogeochem Cycles 2010; 24(4):0-0. Disponible en: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009GB003599. Fecha de última visita: 26 de Junio del 2020.

Widdicombe S, Dashfield SL, McNeill CL, Needham HR, Beesley A, McEvoy A; et al. Effects of CO2 induced seawater acidification on infaunal diversity and sediment nutrient fluxes. Marine Ecol Prog Series 2009;379:59-75.

Sun Q, Miao C, Hanel M, Borthwick AG, Duan Q, Ji D, Li H. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ Int 2019;128:125-36.

Johkan M, Oda M, Maruo T, Shinohara Y. Crop production and global warming. En: Global warming impacts -Case studies on the economy, human health, and on urban and natural environments [Editor: Casalegno S]. IntechOpen. Zagreb: 2011. Disponible en: http://doi:10.5772/24467. Fecha de última visita: 26 de Junio del 2020.

Scher S, Messori G. How global warming changes the difficulty of synoptic weather forecasting. Geophys Res Lett 2019;46:2931-9.

Ebi KL, Otmani Del Barrio M. Lessons learned on health adaptation to climate variability and change: Experiences across low- and middle-income countries. Environ Health Perspect 2017; 125(6):065001. Disponible en: http://doi:10.1289/EHP405. Fecha de última visita: 26 de Junio del 2020.

Kibreab G. Climate change and human migration: A tenuous relationship? Fordham Environ Law Review 2009;357-401.

Farbotko C, Lazrus H. The first climate refugees? Contesting global narratives of climate change in Tuvalu. Global Environ Change 2012; 22:382-90.

Dixon GR. Climate change- Impact on crop growth and food production, and plant pathogens. Canad J Plant Pathol 2012;34:362-79.

Gregory PJ, Ingram JS, Brklacich M. Climate change and food security. Phil Transact Royal Soc B Biol Sci 2005;360 (1463):2139-48.

Bristow E. Global climate change and the industrial animal agriculture link: The construction of risk. Soc Animal 2011;19:205-24.

Pant KP. Effects of agriculture on climate change: a cross country study of factors affecting carbon emissions. J Agric Environ 2009;10:84-102.

FAO. Cambio climático y seguridad alimentaria: Un documento marco. Roma: 2007. Disponible en: http://www.fao.org/3/i0145s/i0145s00.htm. Fecha de última visita: 27 de Junio del 2021.

Oyedele OA, Akinyemi MO, Kovač T, Eze UA, Ezekiel CN. Food safety in the face of climate change: Consequences for consumers. Croatian J Food Sci Technol 2020;12:280-6.

Tirado MC, Clarke R, Jaykus LA, McQuatters-Gollop A, Frank JM. Climate change and food safety: A review. Food Res Int 2010;43:1745-65.

Sohrabi C, Alsafi Z, O’Neill N, Khan M, Kerwan A, Al-Jabir A; et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg 2020;76:71-6. Disponible en: http://doi:10.1016/j.ijsu.2020.02.034. Fecha de última visita: 27 de Junio del 2020.

Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020;579(7798):265-9.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J; et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061-9.

Cruz MP, Santos E, Cervantes MV, Juárez ML. COVID-19, a worldwide public health emergency. Rev Clín Esp [English Edition]. 2020:2020. Disponible en: http://doi:10.1016/j.rceng.2020.03.001. Fecha de última visita: 27 de Junio del 2020.

Sociedad Cubana de Nutrición Clínica y Metabolismo. Sobre la alimentación y la nutrición en la Covid-19 [Editor: Santana Porbén S]. RCAN Rev Cubana Aliment Nutr 2019;30(1 Supl 2):S1-S197.

Stefan N, Birkenfeld AL, Schulze MB, Ludwig DS. Obesity and impaired metabolic health in patients with COVID-19. Nat Rev Endocrin 2020;16 (7):341-2. Disponible en: http://doi:10.1038/s41574-020-0364-6. Fecha de última visita: 28 de Junio del 2020.

Lighter J, Phillips M, Hochman S, Sterling S, Johnson D, Francois F. Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission. Clin Infect Dis 2020;71(15): 896-7. Disponible en: http://doi:10.1093/cid/ciaa415. Fecha de última visita: 28 de Junio del 2020.

Simonnet A, Chetboun M, Poissy J, Reverdy V, Noulette J, Duhamel A. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity 2020;28 (7):1195-9. Disponible en: http://doi:10.1002/oby.22831. Fecha de última visita: 28 de Junio del 2020.

Caussy C, Wallet F, Laville M, Disse E. Obesity is associated with severe forms of COVID-19. Obesity 2020;28 (7):1175. Disponible en: http://doi:10.1002/oby.22842. Fecha de última visita: 28 de Junio del 2020.

Petrilli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell LF, Chernyak Y. Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York city: Prospective cohort study medRxiv 2020;22;369. Disponible en: http://doi:10.1101/2020.04.08.20057794. Fecha de última visita: 28 de Junio del 2020.

Sattar N, McInnes IB, McMurray JJ. Obesity as a risk factor for severe COVID-19 infection: Multiple potential mechanisms. Circulation 2020;142:4-6. Disponible en: http://doi:10.1016/j.metabol.2020.154251. Fecha de última visita: 28 de Junio del 2020.

Mauras N, DelGiorno C, Kollman C, Bird K, Morgan M, Sweeten S; et al. Obesity without established comorbidities of the metabolic syndrome is associated with a proinflammatory and prothrombotic state, even before the onset of puberty in children. J Clin Endocrinol Metab 2010;95(3):1060-8.

Richard C, Wadowski M, Goruk S, Cameron L, Sharma AM, Field CJ. Individuals with obesity and type 2 diabetes have additional immune dysfunction compared with obese individuals who are metabolically healthy. BMJ Open Diabetes Res Care 2017;5(1):e000379. Disponible en: http://doi:10.1136/bmjdrc-2016-000379. Fecha de última visita: 28 de Junio del 2020.

Blancas-Flores G, Almanza-Pérez JC, López-Roa RI, Alarcón-Aguilar FJ, García-Macedo R, Cruz M. La obesidad como un proceso inflamatorio Bol Med Hosp Infant Mex. 2010;67:88-97. Disponible en: http://www.scielo.org.mx/pdf/bmim/v67n2/v67n2a2.pdf. Fecha de última visita: 28 de Junio del 2020.

Francisqueti-Ferron FV, Garcia JL, Ferron AJT, Nakandakare-Maia ET, Gregolin CS, Silva JPDC; et al. Gamma-oryzanol as a potential modulator of oxidative stress and inflammation via PPAR-y in adipose tissue: A hypothetical therapeutic for cytokine storm in COVID-19? Mol Cell Endocrinol 2021;520:111095. Disponible en: http://doi:10.1016/j.mce.2020.111095. Fecha de última visita: 28 de Junio del 2020.

Sanghai N, Tranmer GK. Taming the cytokine storm: Repurposing montelukast for the attenuation and prophylaxis of severe COVID-19 symptoms. Drug Discov Today 2020;25(12):2076-9. Disponible en: http://doi:10.1016/j.drudis.2020.09.013. Fecha de última visita: 28 de Junio del 2020.

Tilg H, Moschen AR. Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nature Rev Immunol 2006;6:772-83.

Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL. Impact of sex and gender on COVID-19 outcomes in Europe. Biol Sex Diff 2020; 11:1-13.

de Siqueira JVV, Almeida LG, Zica BO, Brum IB, Barceló A, de Siqueira Galil AG. Impact of obesity on hospitalizations and mortality, due to COVID-19: A systematic review. Obes Res Clin Pract 2020;14:398-403. Disponible en: http://doi:10.1016/j.orcp.2020.07.005. Fecha de última visita: 28 de Junio del 2020.

Curtin KM, Pawloski LR, Mitchell P, Dunbar J. COVID‐19 and morbid obesity: Associations and consequences for policy and practice. World Med Health Policy 2020;12:512-32.

Luzi L, Radaelli MG. Influenza and obesity: Its odd relationship and the lessons for COVID-19 pandemic. Acta Diabetologica 2020; 57:759-64.

Almond MH, Edwards MR, Barclay WS, Johnston SL. Obesity and susceptibility to severe outcomes following respiratory viral infection. Thorax 2013;68:684-6.

Yang L, Chan KP, Lee RS, Chan WM, Lai HK, Thach EQ; et al. Obesity and influenza associated mortality: Evidence from an elderly cohort in Hong Kong. Prev Med 2013;56(2):118-23. Disponible en: http://doi:10.1016/j.ypmed.2012.11.017. Fecha de última visita: 28 de Junio del 2020.

Morgan OW, Bramley A, Fowlkes A, Freedman DS, Taylor TH, Gargiullo P; et al. Morbid obesity as a risk factor for hospitalization and death due to 2009 pandemic influenza A (H1N1) disease. PLoS ONE 2010;5:e9694. Disponible en: http://doi:10.1371/journal.pone.0009694. Fecha de última visita: 28 de Junio del 2020.

Rebello CJ, Kirwan JP, Greenway FL. Obesity, the most common comorbidity in SARS-CoV-2: Is leptin the link? Int J Obes [Lond] 2020;44(9):1810-7. Disponible en: http://doi:10.1038/s41366-020-0640-5. Fecha de última visita: 28 de Junio del 2020.

Frasca D, Diaz A, Romero M, Blomberg BB. Leptin induces immunosenescence in human B cells. Cell Immunol 2020;348:103994. Disponible en: http://doi:10.1016/j.cellimm.2019.103994. Fecha de última visita: 28 de Junio del 2020.

Zhang AJ, To KK, Li C, Lau CC, Poon VK, Chan CC; et al. Leptin mediates the pathogenesis of severe 2009 pandemic influenza A (H1N1) infection associated with cytokine dysregulation in mice with diet-induced obesity. J Infect Dis 2013;207(8):1270-80. Disponible en: http://doi:10.1093/infdis/jit031. Fecha de última visita: 28 de Junio del 2020.

Tsatsanis C, Margioris AN, Kontoyiannis DP. Association between H1N1 infection severity and obesity- Adiponectin as a potential etiologic factor. J Infect Dis 2010;202:459-60.

O’Brien KB, Vogel P, Duan S, Govorkova EA, Webby RJ, McCullers JA, Schultz-Cherry S. Impaired wound healing predisposes obese mice to severe influenza virus infection. J Infect Dis 2012;205:252-61.

Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011;11(2):85-97. Disponible en: http://doi:10.1038/nri2921. Fecha de última visita: 27 de Junio del 2020.

Karlsson EA, Hertz T, Johnson C, Mehle A, Krammer F, Schultz-Cherry S. Obesity outweighs protection conferred by adjuvanted influenza vaccination. mBio 2016;7(4):1-12. Disponible en: http://doi:10.1128/mBio.01144-16. Fecha de última visita: 27 de Junio del 2020.

Ahn SY, Sohn SH, Lee SY, Park HL, Park YW, Kim H, Nam JH. The effect of lipopolysaccharide-induced obesity and its chronic inflammation on influenza virus-related pathology. Environ Toxicol Pharmacol 2015;40(3):924-30. Disponible en: http://doi:10.1016/j.etap.2015.09.020. Fecha de última visita: 27 de Junio del 2020.

Honce R, Schultz-Cherry S. Impact of obesity on influenza, a virus pathogenesis, immune response, and evolution. Front Immunol 2019;10:1-15. Disponible en: http://doi:10.3389/fimmu.2019.01071. Fecha de última visita: 27 de Junio del 2020.

Green WD, Beck MA. Obesity impairs the adaptive immune response to influenza virus. Ann Am Thorac Soc 2017;14(Suppl 5):S406-S409. Disponible en: http://doi:10.1513/AnnalsATS.201706-447AW. Fecha de última visita: 29 de Junio del 2020.

Singh S, Kaur R, Singh RK. Revisiting the role of vitamin D levels in the prevention of COVID-19 infection and mortality in European countries post infections peak. Aging Clin Exp Res 2020;32:1609-12.

Sasikala T, Brijesh Mukherjee, Sahoo S, Sahoo AK. Vitamin-D deficiency as a predisposing cause for COVID-19 morbidities. J Crit Rev 2020;7:2522-6.

Pereira-Santos M, Costa PDF, Assis AD, Santos CDS, Santos DD. Obesity and vitamin D deficiency: A systematic review and meta‐analysis. Obes Rev 2015;16:341-9.

Liel Y, Ulmer E, Shary J, Hollis BW, Bell NH. Low circulating vitamin D in obesity. Calcif Tissue Int 1988;43:199-201.

Martineau AR, Jolliffe DA, Greenberg L, Aloia JF, Bergman P, Dubnov-Raz G. Vitamin D supplementation to prevent acute respiratory infections: Individual participant data meta-analysis. Health Technol Assess 2019;23:1-44. Disponible en: http://doi:10.3310/hta23020. Fecha de última visita: 28 de Junio del 2020.

Bray GA, Kim KK, Wilding JPH; for the World Obesity Federation. Obesity: A chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev 2017;18(7):715-23. Disponible en: http://doi:10.1111/obr.12551. Fecha de última visita: 29 de Junio del 2020.

Petrova D, Salamanca-Fernández E, Rodríguez Barranco M, Navarro Pérez P, Jiménez Moleón JJ, Sánchez MJ. La obesidad como factor de riesgo en personas con COVID-19: Posibles mecanismos e implicaciones. Atención Primaria 2020;52(7):496-500. Disponible en: http://doi:10.1016/j.aprim.2020.05.003. Fecha de última visita: 29 de Junio del 2020.

Codella R, Luzi l, Inverardi l, Ricordi C. The anti-inflammatory effects of exercise in the syndromic thread of Diabetes and autoimmunity. Eur Rev Med Pharmacol Sci 2015;19:3709-22.

Castro RRTD, Silveira JGD, Castro RRTD. Exercise training: A hero that can fight two pandemics at once. Int J Cardiovasc Sci 2020;33:284-7.

Zheng Q, Cui G, Chen J, Gao H, Wei Y, Uede T; et al. Regular exercise enhances the immune response against microbial antigens through up-regulation of toll-like receptor signaling pathways. Cell Physiol Biochem 2015;37:735-46. Disponible en: http://doi:10.1159/000430391. Fecha de última visita: 29 de Junio del 2020.

Arthur S, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A, Jourdain M. High prevalence of obesity in Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity 2020:2020. Disponible en: https://doi.org/10.1002/oby.22831. Fecha de última visita: 29 de Junio del 2020.

Hahler B. Morbid obesity: A nursing care challenge. Medsurg Nursing 2002;11:85-90.

Zurayk R. Pandemic and food security. J Agric Food Syst Commun Dev 2020;9(3):17-21. Disponible en: https://foodsystemsjournal.org/index.php/fsj/article/view/803. Fecha de última visita: 29 de Junio del 2020.

Wise J. Covid-19: Pandemic exposes inequalities in global food systems. BMJ 2020;369:m1915. Disponible en: http://doi:10.1136/bmj.m1915. Fecha de última visita: 29 de Junio del 2020.

Soares P, Almendra-Pegueros R, Benítez Brito N, Fernández-Villa T, Lozano-Lorca M, Valera-Gran D, Navarrete-Muñoz EM. Sistemas alimentarios sostenibles para una alimentación saludable. Rev Esp Nutr Hum Diet 2020;24(2):87-9. Disponible en: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S2174-51452020000200001. Fecha de última visita: 29 de Junio del 2020.

Intini J, Jacq E, Torres D. Transformar los sistemas alimentarios para alcanzar los ODS. 2030/Alimentación, agricultura y desarrollo rural en América Latina y el Caribe. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Documento número 12. Santiago de Chile: 2019. Pp 1-27. Disponible en: http://www.fao.org/3/ca5130es/ca5130es.pdf. Fecha de última visita: 29 de Junio del 2020.

High Level Panel of Experts on Food Security and Nutrition. Nutrition and food systems. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security. Rome: 2017. Disponible en: http://www.fao.org/fileadmin/user_upload/hlpe/hlpe_documents/HLPE_S_and_R/HLPE_2017_Nutrition-and-food-systems_S_R-ES.pdf. Fecha de última visita: 29 de Junio del 2020.

Friel S, Schram A, Townsend B. The nexus between international trade, food systems, malnutrition and climate change. Nature Food 2020;1:51-8.

IFPRI Global Food Policy Report 2017. International Food Policy Research Institute. Washington DC: 2018. Pp 1-142. Disponible en: https://gfpr.ifpri.info. Fecha de última visita: 29 de Junio del 2020.

Organización Panamericana de la Salud OPS/OMS. Alimentos y bebidas ultraprocesados en América Latina: Tendencias, efecto sobre la obesidad e implicaciones para las políticas públicas. Washington DC: 2015. Disponible en: https://iris.paho.org/bitstream/handle/10665.2/7698/9789275318645_esp.pdf?sequence=5. Fecha de última visita: 29 de Junio del 2020.

Popkin B, Monteiro C, Swinburn B. Overview: Bellagio Conference on program and policy options for preventing obesity in the low­ and middle­income countries. Obes Rev 2013;14(2 Suppl):S1-S8. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1111/obr.12108. Fecha de última visita: 29 de Junio del 2020.

Neff RA, Palmer AM, McKenzie SE, Lawrence RS. Food systems and public health disparities. J Hunger Environ Nutr 2009;4:282-314.

United Nations Food and Agriculture Organization. Policy brief: The impact of COVID-19 on food security and nutrition. FAO/UN. Rome: 2020. Disponible en: https://www.un.org/sites/un2.un.org/files/sg_policy_brief_on_covid_impact_on_food_security.pdf. Fecha de última visita: 29 de Junio del 2020.

Comisión Económica de las Naciones Unidas para la América Latina. América Latina y el Caribe ante la pandemia del COVID-19: Efectos económicos y sociales. Santiago de Chile: 2020. Disponible en: https://repositorio.cepal.org/handle/11362/45337. Fecha de última visita: 29 de Junio del 2020.

Global Network Against Food Crises and Food Security Information Network. 2020 Global report on food crises. Disponible en: https://docs.wfp.org/api/documents/WFP-0000114546/download/?_ga=2.91109523.869826042.1606834404-2071522185.1606834404. Fecha de última visita: 29 de Junio del 2020.

Cortés LME. Hambre, inseguridad alimentaria y Covid-19 en América Latina y el Caribe. Instituto de Nutrición de Centroamérica y Panamá. Disponible en: https://repositorio.cepal.org/bitstream/handle/11362/6077/1/S0410044_es.pdf. Fecha de última visita: 29 de Junio del 2020.

Comisión Económica de las Naciones Unidas para América Latina. América Latina y el Caribe ante la pandemia del COVID-19: Efectos económicos y sociales. Santiago de Chile: 2020. Disponible en: https://repositorio.cepal.org/handle/11362/45337. Fecha de última visita: 29 de Junio del 2020.

Clemmensen C, Petersen MB, Sørensen TI. Will the COVID-19 pandemic worsen the obesity epidemic? Nature Rev Endocrinol 2020;16:469-70.

Ratha DK, De S, Kim EJ, Plaza S, Seshan GK, Yameogo ND; for the KNOMAD and Migration and Remittances Team. COVID-19 crisis through a migration lens. Migration and Development Brief number 32. World Bank. Washington DC: 2020. Disponible en: https://thedocs.worldbank.org/en/doc/775371590633083052-0090022020/original/05292020COVID19CrisisThroughaMigrationLensDilipRatha.pdf. Fecha de última visita: 29 de Junio del 2020.

CEPAL/FAO. Cómo evitar que la crisis del COVID-19 se transforme en una crisis alimentaria: Acciones urgentes contra el hambre en América Latina y el Caribe. Roma: 2020. Disponible en: https://repositorio.cepal.org/handle/11362/45702. Fecha de última visita: 29 de Junio del 2020.

Heyd T. Covid-19 and climate change in the times of the Anthropocene. Anthropocene Rev 2021;8:21-36.

McMahon BJ, Morand S, Gray JS. Ecosystem change and zoonoses in the Anthropocene. Zoonoses Public Health 2018;65(7):755-65. Disponible en: http://doi.org:10.1111/zph.12489. Fecha de última visita: 29 de Junio del 2020.

Cheval S, Mihai Adamescu C, Georgiadis T, Herrnegger M, Piticar A, Legates DR; et al. Observed and potential impacts of the COVID-19 pandemic on the environment. Int J Environ Res Public Health 2020;17(11): 4140. Disponible en: http://doi:10.3390/ijerph17114140. Fecha de última visita: 29 de Junio del 2020.

Le Quéré C, Jackson RB, Jones MW, Smith AP, Abernethy S, Robbie M. A, De-Gol AJ, Willis DR; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change 2020;10:647-53. Disponible en: https://www.nature.com/articles/s41558-020-0797-x. Fecha de última visita: 29 de Junio del 2020.

Abd Rabou AFN. How is the COVID-19 outbreak affecting wildlife around the world? Open J Ecol 2020; 10(8):497-517. Disponible en: https://www.scirp.org/html/1-1381141_101956.htm. Fecha de última visita: 29 de Junio del 2020.

Rutz C, Loretto MC, Bates AE, Davidson SC, Duarte CM, Jetz W; et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nature Ecol Evol 2020;4: 1156-9.

Prata JC, Silva AL, Walker TR, Duarte AC, Rocha-Santos T. COVID-19 pandemic repercussions on the use and management of plastics. Environ Sci Technol 2020;54:7760-5.

Nzediegwu C, Chang SX. Improper solid waste management increases potential for COVID-19 spread in developing countries. Resour Conserv Recycl 2020;161:104947. Disponible en: http://doi:10.1016/j.resconrec.2020.104947. Fecha de última visita: 29 de Junio del 2020.

Loiseau E, Saikku L, Antikainen R, Droste N, Hansjürgens B, Pitkänen K; et al. Green economy and related concepts: An overview. J Clean Product 2016;139: 361-71.

Sanguino R, Barroso A, Fernández-Rodríguez S, Sánchez-Hernández MI. Current trends in economy, sustainable development, and energy: A circular economy view. Environ Sci Pollut Res 2020;27:1-7. Disponible en: https://doi.org/10.1007/s11356-019-07074-x. Fecha de última visita: 29 de Junio del 2020.

Dietz WH. Climate change and malnutrition: We need to act now. J Clin Invest 2020;130(2):556-8. Disponible en: http://doi:10.1172/JCI135004. Fecha de última visita: 29 de Junio del 2020.

Magkos F, Tetens I, Bügel SG, Felby C, Schacht SR, Hill JO; et al. A perspective on the transition to plant-based diets: A diet change may attenuate climate change, but can it also attenuate obesity and chronic disease risk? Adv Nutr 2020;11:1-9.

Climate changes in cities [Editores: Hughes S, Chu EK, Mason SG]. Springer: 2018. Disponible en: https://link.springer.com/book/10.1007%2F978-3-319-65003-6. Fecha de última visita: 29 de Junio del 2020.

Lal R. Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Secur 2020: 1-6. Disponible en: http://doi:10.1007/s12571-020-01058-3. Fecha de última visita: 30 de Junio del 2020.

Kwan SC, Hashim JH. A review on co-benefits of mass public transportation in climate change mitigation. Sustainable Cities Soc 2016;22:11-8.

Smith P, Gregory PJ. Climate change and sustainable food production. Proc Nutr Soc 2013;72:21-8.

Alonso G, Clark I. Cuba confronts climate change. MEDICC Rev 2015;17(2):10-3. Disponible en: https://www.scielosp.org/article/medicc/2015.v17n2/10-13/. Fecha de última visita: 30 de Junio del 2020.

Rodríguez Peña D. Evaluación de la eficacia del Programa de Autoabastecimiento Alimentario Municipal. Tesis de Maestría. Universidad de Camagüey “Ignacio Agramonte Loynaz”. Ministerio de Educación Superior. Camagüey: 2017. Disponible en: http://rediuc.reduc.edu.cu/jspui/handle/123456789/1242. Fecha de última visita: 30 de Junio del 2020.

Ministerio de Salud Pública de Cuba. Plan integral para la prevención y el control de la anemia por deficiencia de hierro en Cuba. La Habana: 2008. Disponible en: http://scielo.sld.cu/scielo.php?pid=S0864-34662011000300003&script=sci_arttext&tlng=pt. Fecha de última visita: 30 de Junio del 2020.

República de Cuba. Consejo de Ministros. Tarea Vida. Plan de Estado para el enfrentamiento al cambio climático. Ministerio de Ciencia, Tecnología y Medio Ambiente. La Habana: 2017. Disponible en: https://www.ecured.cu/Tarea. Fecha de última visita: 30 de Junio del 2020.

Plan Gubernamental para la Prevención y Enfrentamiento a los Delitos e Ilegalidades que afectan a los Recursos Forestales, la Flora y Fauna Silvestre y otros Recursos Naturales. Ministerio de Agricultura. La Habana: 2019.

Plan para la Seguridad Nutricional y la Educación Alimentaria en Cuba. Disponible en: http://agricultura.minag.gob.cu. Fecha de última visita: 26 de Junio del 2020.

Díaz-Canel M, Nuñez J. Gestión gubernamental y ciencia cubana en el enfrentamiento a la COVID-19. Anales de la Academia de Ciencias de Cuba 2020;10(2):0-0 [número especial dedicado a la COVID-19]. Disponible en: http://www.revistaccuba.cu/index.php/revacc/article/view/881/887. Fecha de última visita: 26 de Junio del 2020.

Páez CCT. Modelo para la gestión de políticas territoriales de desarrollo local a escala municipal en Cuba. Anales de la Academia de Ciencias de Cuba 2018; 8(1):0-0. Disponible en: http://revistaccuba.sld.cu/index.php/revacc/article/view/405. Fecha de última visita: 26 de Junio del 2020.

Milera MC. Climate change, affectations and opportunities for livestock production in Cuba. Pastos Forrajes 2011;34(2):127-43. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942011000200001&lng=es&nrm=iso. Fecha Fecha de última visita: 26 de Junio del 2020.

Enlaces refback

  • No hay ningún enlace refback.




Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.